skip to main content


Search for: All records

Creators/Authors contains: "Graham, Daniel J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Surfaces represent a unique state of matter that typically have significantly different compositions and structures from the bulk of a material. Since surfaces are the interface between a material and its environment, they play an important role in how a material interacts with its environment. Thus, it is essential to characterize, in as much detail as possible, the surface structure and composition of a material. However, this can be challenging since the surface region typically is only minute portion of the entire material, requiring specialized techniques to selectively probe the surface region. This tutorial will provide a brief review of several techniques used to characterize the surface and interface regions of biological materials. For each technique we provide a description of the key underlying physics and chemistry principles, the information provided, strengths and weaknesses, the types of samples that can be analyzed, and an example application. Given the surface analysis challenges for biological materials, typically there is never just one technique that can provide a complete surface characterization. Thus, a multi-technique approach to biological surface analysis is always required. 
    more » « less
  2. Abstract

    Scaffolds composed of synthetic polymers such as poly(caprolactone) (PCL) are widely used for the support and repair of tissues in biomedicine. Pores are common features in scaffolds as they facilitate cell penetration. Various surface modifications can be performed to promote key biological responses to these scaffolds. However, verifying the chemistry of these materials post surface modification is problematic due to the combination of three‐dimensional (3D) topography and surface sensitivity. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) is commonly used to correlate surface chemistry with cell response. In this study, 3D imaging mass spectrometry analysis of surface modified synthetic polymer scaffolds is demonstrated using PCL porous scaffold, a pore filling polymer sample preparation, and 3D imaging ToF‐SIMS. We apply a simple sample preparation procedure, filling the scaffold pores with a poly(vinyl alcohol)/glycerol mixture to remove topographic influence on image quality. This filling method allows the scaffold (PCL) and filler secondary ions to be reconstructed into a 3D chemical image of the pore. Furthermore, we show that surface modifications in the pores of synthetic polymer scaffolds can be mapped in 3D. Imaging of “dry” and “wet” surface modifications is demonstrated as well as a comparison of surface modifications with relatively strong ToF‐SIMS peaks (fluorocarbon films [FC]) and to more biologically relevant surface modification of a protein (bovine serum albumin [BSA]). We demonstrate that surface modifications can be imaged in 3D showing that characteristic secondary ions associated with FC and BSA are associated with C3F8plasma treatment and BSA, respectively within the pore.

     
    more » « less